STRUCTURES OF TWO NOVEL MONOTERPENE ALKALOID GLUCOSIDES FROM LONICERA XYLOSTEUM L.

Ratan K. Chaudhuri and Otto Sticher Eidgenössische Technische Hochschule, Pharmazeutisches Institut, ETH-Zentrum, CH-8092 Zürich, Switzerland

> Tammo Winkler Cîba-Geigy AG, CH-4002 Basel, Switzerland

Summary - The structures of loxylostosidine A and B, two new sulfoxide - containing monoterpene alkaloid glucosides, are described.

We recently¹ determined structure <u>1</u> for xylostosidine, the first of a new class of monoterpene alkaloid glycosides, from *Lonicera xylosteum L.*. Subsequently, we made a search for the presence of further members of this class of compounds in *L. xylosteum* that led to the isolation of two additional alkaloid glucosides². In this communication we report the structures of these two compounds, named loxylostosidine A (2) and loxylostosidine B (3), respectively.

Loxylostosidine A (2) $[\alpha]_D^{20} = -248.32$ (c= 0.65, MeOH) was obtained as an amorphous substance. The compound was found to possess the composition $C_{18}H_{25}O_9NS$ (M⁺:= 431, FD-MS), one oxygen atom more than xylostosidine (1). In contrast to the latter, loxylostosidine A failed to provide a satisfactory M⁺ peak in the EI-MS. The UV-spectrum λ_{max} (MeOH): 241 (log ε = 4.04) and the IR spectrum (KBr) at 1660 cm⁻¹, showed that loxylostosidine A, like xylostosidine, also possessed an β -alkoxyacrylamide function.

The compound <u>2</u> afforded a tetraacetate, $C_{26}H_{33}O_{13}NS$, accounting for four acetyl functions in the molecule (¹H-NMR), and thus all the hydroxyl functions, as in xylostosidine (<u>1</u>), were associated with the glucose moiety.

The 13 C-NMR spectrum of 2 (Table) displayed 18 signals, 14 of which are virtually identical in chemical shift and multiplicity with signals observed in the 13 C-NMR spectrum of 1. Three of the remaining four signals appeared as triplets (SFORD) at 27.83, 44.0 and 49.55 ppm and were assigned 3 to C(6), C(12) and C(13), respectively. The fourth, a doublet at 83.40 ppm, was assigned to C(7). The configuration at the S-atom was deduced from the chemical shift difference of C(6) between 2 and 1 (-4.64 ppm). This small γ -effect is only compatible with a trans arrangement of C(6) and the 0-atom of the sulfoxide group 4 .

The 360 MHz ¹H-NMR spectrum⁷ of <u>2</u> is rather similar to that of <u>1</u>. The following differences, however, corroborate⁸ the assignment of the configuration at the S-atom made with the aid of the ¹³C-NMR data: H_{eq} -C(6) is shifted downfield by 0.33 ppm with respect to <u>1</u>, indicating that this proton is quasi synaxial⁸ to the O-atom, and H-C(7) shows a high field shift of ca. 0.5 ppm as compared with H-C(7) in <u>1</u>. H-C(5) and H-C(7) are cis to each other as in <u>1</u> (cf. the large trans couplings to H_{ax} -C(6)⁷). The vicinal coupling constants J_{5,9} and J_{1,9} amount to 5.5 and 2 Hz, resp., proving that the configuration at C(1), C(5) and C(9) is the same as in <u>1</u>, sweroside⁹ or bakankoside¹⁰. On the basis of the data presented, structure <u>2</u> is proposed for loxylostosidine A.

Loxylostosidine B (3), $[\alpha]_0^{20} = -286.97$ (c= 0.42, MeOH) is a minor metabolite and was obtained in pure form only after repeated chromatography over a reversed phase C_{18} column using MeOH/H₂0. The compound 3, like loxylostosidine A, was found to possess the composition $C_{18}H_{25}O_9NS$ (M⁺ = 431, FD-MS) but displayed a different TLC and HPLC behaviour. The UV and IR spectra were very similar to that of 2.

The ¹³C-NMR (Table) and the ¹H-NMR¹¹ spectra indicated that loxylostosidine B differs from <u>2</u> only by the configuration at the S-atom. This assignment is based on the following observations: (i) The chemical shift difference of C(6) between <u>3</u> and <u>1</u> is -8.12 ppm (syn- γ -effect⁴), (ii) H_{ax}-C(6) is shifted downfield by 0.23 ppm whereas H_{eq}-(6) is unchanged in respect to <u>1</u> (cf. lit.⁸), (iii) finally, the lactam carbonyl C(11) appeared at lower field (166.55 ppm) than in <u>1</u> or <u>2</u>; we interpret this downfield shift as a consequence of the change in the configuration at the S-atom, making an axial orientation of the 0-atom probable. The above data can only be satisfactorily explained with structure 3 for loxylostosidine B.

An obvious inference from the structures of loxylostosidine A (2) and loxylostosidine B (3) is that their biogenetic precursor would have to be xylostosidine (1), from which they are formed by simple S-oxidation. Despite a detailed search for it's presence, C(7)-epi-xylostosidine and it's two sulfoxides have so far eluded isolation from *L. xylosteum*. This search, however, was rewarding as it resulted in the isolation of lonicerosidin ¹², yet another novel compound belonging to the secoiridoid glycosides.

Acknowledgements - This work was supported by a research grant of the Swiss Federal Institute of Technology (ETH). The authors wish to thank Mr. K. Hiltbrunner, ETH and Mr. P. Hug, Ciba-Geigy, for the determination of the spectral data and Miss J. Kyzintas for sectretarial help.

C-Atom	1 ^b	2	3	C-Atom	<u>1</u> b	2	<u>3</u>
C-1	97.19	97.26	97.45	C-11	164.57	164.28	166.55
C-3	148.90	149.85	149.35	C-12	49.83	44.00	47.40 ^C
C-4	107.92	107.39	107.62	C-13	28.63	49.55	46.02 ^C
C-5	28.36	27.17	27.34	C-1'	99.39	99.45	99.58
C-6	32.47	27.83	24.35	C-2'	74.49	74.49	74.72
C-7	62.29	83.40	76.74	C-3'	78.03	78.08	78.26
C-8	133.52	133.28	133.40	C-4'	71.31	71.32	71.50
C-9	44.23	44.19	44.58	C-5'	77.67	77.63	77.90
C-10	120.75	121.18	121.21	C-6'	62.50	62.55	62.61

Table. ¹³C-NMR Spectral Data of Alkaloid Glucosides of L. xylosteum^a

^a Chemical shifts are given in ppm downfield from TMS. All compounds are recorded in CD_3OD . ^b Data taken from Ref. 1

^C Assignments are interchangeable

- 1. Xylostosidine
- 2. Loxylostosidine A

3. Loxylostosidine B

References and Notes

¹ R.K. Chaudhuri, O. Sticher and T. Winkler, *Helv. Chim. Acta 63*, 1045 (1980).

² For leading references see: R.S. Kapil and R.T. Brown, in "The Alkaloids", Eds. R.H.F. Manske and R.G.A. Rodrigo, Academic Press Inc., New York, San Francisco, London, Vol. XVII, 1979, p.546.

Õ–Glu

- ³ Assignment is based on (i) multiplicity of the signal in the SFORD spectrum, (ii) literature data on chemical shifts of SO containing compounds⁴ and (iii) comparison of the spectra of 1, 2 and 3 with related compounds^{5,6}.
- ⁴ R.A. Archer, R.D.G. Cooper, P.V. Demarco and L.R.F. Johnson, J. Chem. Soc., Chem. Comm., 1291 (1970); C.R. Harrison and P. Hodge, J. Chem. Soc., Perkin I, 1722 (1976); R.P. Rooney and S.A. Evans, J. Org. Chem. 45, 180 (1980).
- ⁵ R.K. Chaudhuri, F.Ü. Afifi-Yazar, O. Sticher and T, Winkler, *Tetrahedron 36*, 2317 (1980).
- ⁶ S.R. Jensen, S.E. Lyse-Petersen and B.J. Nielsen, *Phytochemistry* 18, 273 (1979).
- ⁷¹H-NMR of loxylostosidine A, (<u>2</u>) [CD₃0D, δ -values in ppm from TMS internal ref., assignments were aided by double resonance experiments]: 7.43 [d, J_{3,5}= 2.5, H-C(3)], 5.52 [d, J_{1,9}= 2, H-C(1)], 5.52 [m, H-C(8)], 5.24-5.37 [m, 2H-C(10)], 4.66 [d, J_{1',2}:= 8, H-C(1')], 4.66 & 3.76 [m, 2H-C(12)], 4.29 [dd, J_{6ax,7}= 12.5, J_{6eq,7}= 4, H-C(7)], ca. 3.2 [m, H-C(2'), H-C(5), H-C(13)], 2.98 [m, H-C(13)], 2.76 [m, J_{8,9}= 9.5, J_{5,9}= 5.5, J_{1,9}= 2, H-C(9)], 2.51 [dt, J_{6,6}= 12.5, J_{5,6}= J_{6,7}= 4, H_{eq}-C(6)], 1.65 [q, J_{5,6}= J_{6,6}= J_{6,7}= 12.5, H_{ax}-C(6)].
- ⁸ R. Lett and A. Marquet, *Tetrahedron 30*, 3379 (1974).
- ⁹ H. Inouye, T. Yoshida, Y. Nakamura and S. Tobita, *Chem. Pharm. Bull. 18*, 1889 (1970).
- ¹⁰ W. Wildmann, J. Le Men and K. Wiesner, in Cyclopentanoid Terpene Derivatives, Eds., W.I. Taylor and A.R. Battersby, Marcel Dekker, Inc., New York, 1969, p.263.
- ¹¹ ¹H-NMR of loxylostosidine B, (<u>3</u>) [CD₃OD, δ -values in ppm from TMS internal ref.]: 7.44 [d, J_{3,5}= 2.5, H-C(3)], 5.56 [dt, J_{8,10}= 17, J_{8,9}= J_{8,10}= 10, H-C(8)], 5.52 [d, J_{1,9}= 1.8, H-C(1)], 5.34 [dd, J_{8,10}= 17, J_{10,10}= 2, H-C(10)], 5.27 [dd, J_{8,10}= J_{10,10}= 2, H'-C(10)], 4.68 [d, J_{1',2'}= 8, H-C(1')], 4.61 [dd, J_{6ax,7}= 11.5, J_{6eq,7}= 3.5, H-C(7)], 4.32 & 3.94 [m, 2H-C(12)], 3.0-3.4 [m, H-C(5) & H-C(13)], overlapping with H-C(2') to H-C(5') and CD₂HOD), 2.76 [m, J_{8,9}= 10, J_{5,9}= 5.5, J_{1,9}= 1.8, H-C(9)], 2.19 [dt, J_{6,6}= 12.5, J_{5,6}= J_{6,7}= ca. 3.5, H_{eq}-C(6)], 1.72 [m, J_{5,6}= 13.5, J_{6,6}= 12.5, J_{6,7}= 11.5, H_{ax}-C(6)].
- ¹² R.K. Chaudhuri and O. Sticher, unpublished results.

(Received in Germany 3 November 1980)